Где применяется газ ацетилен? Ацетилен и горючие газы Температура замерзания ацетилена

Ацетилен

Название этого вещества связано со словом «уксус». Сегодня это единственный широко используемый в промышленности газ, горение и взрыв которого возможны в отсутствие кислорода или других окислителей. Сгорая в кислоте, он дает очень горячее пламя — до 3100°С.

Как синтезировался ацетилен

Впервые ацетилен получил в 1836 Эдмунд Дэви, двоюродный брат знаменитого Гемфри Дэви. Он подействовал водой на карбид калия: К 2 С 2 + 2Н 2 О=С 2 Н 2 + 2КОН и получил новый газ, который назвал двууглеродистым водородом. Этот газ был, в основном, интересен химикам с точки зрения теории строения органических соединений. Один из создателей так называемой теории радикалов Юстус Либих назвал группу атомов (т.е. радикал) С 2 Н 3 ацетилом.
На латыни acetum - уксус; молекула уксусной кислоты (С 2 Н 3 О+О+Н, как записывали тогда ее формулу) рассматривалась как производное ацетила. Когда французский химик Марселен Бертло в 1855 сумел получить «двууглеродистый водород» сразу несколькими способами, он назвал его ацетиленом . Бертло считал ацетилен производным ацетила, от которого отняли один атом водорода: С 2 Н 3 - Н = С 2 Н 2 . Сначала Бертло получал ацетилен, пропуская пары этилена, метилового и этилового спирта через раскаленную докрасна трубку. В 1862 он сумел синтезировать ацетилен из элементов, пропуская водород через пламя вольтовой дуги между двумя угольными электродами. Все упомянутые методы синтеза имели только теоретическое значение, и ацетилен был редким и дорогим газом, пока не был разработан дешевый способ получения карбида кальция прокаливанием смеси угля и негашеной извести: СаО + 3С = СаС 2 + СО. Это произошло в конце XIX века.
Тогда ацетилен стали использовать для освещения . В пламени при высокой температуре этот газ, содержащий 92,3% углерода (это своеобразный химический рекорд), разлагается с образованием твердых частичек углерода, которые могут иметь в своем составе от нескольких до миллионов атомов углерода. Сильно накаливаясь во внутреннем конусе пламени, эти частички обуславливают яркое свечение пламени — от желтого до белого, в зависимости от температуры (чем горячее пламя, тем ближе его цвет к белому).
Ацетиленовые горелки давали в 15 раз больше света, чем обычные газовые фонари, которыми освещали улицы. Постепенно они были вытеснены электрическим освещением, но еще долго использовались в небольших фонарях на велосипедах, мотоциклах, в конных экипажах.
В течение длительного времени ацетилен для технических нужд (например, на стройках) получали «гашением» карбида водой. Полученный из технического карбида кальция ацетилен имеет неприятный запах из-за примесей аммиака, сероводорода, фосфина, арсина.

Ацетилен сегодня: способы получения

В промышленности ацетилен часто получают действием воды на карбид кальция.
Сейчас широко применяются методы получения ацетилена из природного газа - метана:
электрокрекинг (струю метана пропускают между электродами при температуре 1600°С и быстро охлаждают, чтобы предотвратить разложение ацетилена);
термоокислительный крекинг (неполное окисление), где в реакции используют теплоту частичного сгорания ацетилена.

Применение

Ацетилен используют:

  • для сварки и резки металлов,
  • как источник очень яркого, белого света в автономных светильниках, где он получается реакцией карбида кальция и воды,
  • в производстве взрывчатых веществ,
  • для получения уксусной кислоты, этилового спирта, растворителей, пластических масс, каучука, ароматических углеводородов.

Свойства ацетилена

В химически чистом виде ацетилен обладает слабым эфирным запахом. Технический ацетилен, благодаря наличию в нем примесей, в частности фосфористого водорода, имеет резкий специфический запах. Ацетилен легче воздуха. Газообразный ацетилен - бесцветный газ молекулярная масса - 26,038.
Ацетилен способен растворяться во многих жидкостях. Его растворимость зависит от температуры: чем ниже температура жидкости, тем больше она способна «забрать» ацетилена. В практике производства растворенного ацетилена используют ацетон, который при температуре 15 °С растворяет до 23 объемов ацетилена.
Содержание фосфористого водорода в ацетилене должно быть строго ограничено, так как в момент образования ацетилена в присутствии воздуха при высокой температуре может произойти самовоспламенение.
Ацетилен — единственный широко используемый в промышленности газ, относящийся к числу немногих соединений, горение и взрыв которых возможны в отсутствии кислорода или других окислителей.
Еще в 1895 г. А.Л.Ле Шателье обнаружил, что ацетилен, сгорая в кислоте, дает очень горячее пламя (до 3150°С), поэтому его широко используют для сварки и резки тугоплавких металлов. Сегодня применение ацетилена для газопламенной обработки металлов испытывает сильную конкуренцию со стороны более доступных горючих газов (природный газ, пропан-бутан и т.д.). Однако преимущество ацетилена — в самой высокой температуре горения. В таком пламени очень быстро расплавляются даже толстые куски стали. Именно поэтому газопламенная обработка ответственных узлов машиностроительных конструкций производится только с помощью ацетилена, который обеспечивает наивысшую производительность и качество процесса сварки.
Кроме того, ацетилен широко используется в органическом синтезе разнообразных веществ — уксусного альдегида и уксусной кислоты, синтетических каучуков (изопренового и хлоропренового), поливинилхлорида и других полимеров.

Для газопламенных работ необходимо осуществить передачу тепла из пламени в металл в количестве, достаточном для конкретных условий работ. Горючие газы сгорают, как правило, в смеси с кислородом. Наибольшей температурой обладает ацетилено-кислородное пламя (3200°С), что позволяет использовать ацетилен при любых видах газопламенной обработки металлов. Интенсивность горения пламени определяется произведением нормальной скорости горения на теплоту сгорания смеси. Ацетилен обладает наивысшей «интенсивностью горения», которая для смеси стехиометрического состава составляет 27 700 ккал/(м 2 *с).

Ацетилен

Ацетилен относится к группе непредельных углеводородов ряда С n Н 2n-2 . . Это бесцветный горючий газ со специфическим запахом; благодаря наличию в нем примесей – фосфористого водорода, сероводорода и пр. плотность ацетилена при 20°С и 760 мм рт. ст. равна 1,091 кг/м 3 ; при 0°С и 760 мм рт. ст. – – плотность 1,171 кг/м 3 . Ацетилен легче воздуха; плотность по сравнению с плотностью воздуха 0,9; молекулярная масса 26,038. Критическая точка для ацетилена характеризуется давлением насыщенного пара, равным 61,65 кгс/см 2 , и температурой 35,54°С. При 760 мм рт. ст. и температуре –84°С ацетилен переходит в жидкое состояние, при температуре –85°С – затвердевает.

Ацетилен – единственный широко используемый в промышленности газ, относящийся к числу немногих соединений, горение и взрыв которых возможны в отсутствии кислорода или других окислителей. Ацетилен высокоэндотермическое соединение; при разложении 1 кг ацетилена выделяется более 2000 ккал, т. е. примерно в 2 раза больше, чем при взрыве 1 кг твердого ВВ тротила. Температура самовоспламенения ацетилена колеблется в пределах 500 – 600°С при давлении 2 кгс/см 2 и заметно снижается с увеличением давления; так, при давлении 22 кгс/см 2 температура самовоспламенения ацетилена равна 350°С, а при наличии катализаторов, таких, как железный порошок, силикагель, активный уголь и др. разложение ацетилена начинается при 280 – 300°С. Присутствие окиси меди снижает температуру самовоспламенения до 246°С. При определенных условиях ацетилен реагирует с медью, образуя взрывоопасные соединения; поэтому при изготовлении ацетиленового оборудования запрещается применять сплавы, содержащие более 70% Cu.

Взрывчатый распад ацетилена, как правило, начинается при интенсивном нагреве со скоростью 100 – 500°С/с. При медленном нагреве происходит реакция полимеризации ацетилена, идущая с выделением тепла, которая, как правило, при температуре свыше 530°С влечет за собой взрывчатый распад ацетилена. Нижнее предельное давление, при котором возможно разложение ацетилена, равно 0,65 кгс/см 2 . Пределы взрываемости для ацетилена широки (табл. 2). Наиболее опасными являются смеси ацетилена с кислородом стехиометрического состава (~30%). Скорости распространения пламени и детонации достигают наибольшего значения при соотношении ацетилена и кислорода 1:2,5 и соответственно равны 13,5 и 2400 м/с при нормальных условиях. Давление, образующееся при взрыве ацетилена, зависит от начальных параметров и характера взрыва. Оно может возрасти примерно в 10 – 12 раз по сравнению с начальным при взрыве в небольших сосудах и может быть увеличено в 22 раза при детонации чистого ацетилена и в 50 раз при детонации ацетилено-кислородной смеси.

При газопламенной обработке металлов ацетилен используют либо в газообразном состоянии при получении его в переносных или стационарных ацетиленовых генераторах, либо в растворенном состоянии. Растворенный ацетилен представляет собой раствор ацетилена в ацетоне, распределенный равномерно в пористом наполнителе под давлением. Растворимость ацетилена зависит от температуры и давления. Пористая масса в баллоне обеспечивает рассосредоточение ацетилена по всему объему и локализацию взрывчатого распада ацетилена. При отсутствии пористой массы в баллоне инициированный взрывной распад ацетилена, растворенного в ацетоне, происходит при давлении ниже 5 кгс/см 2 . В качестве пористых наполнителей могут быть использованы не только насыпные пористые массы, но и литые пористые массы, которые нашли применение за рубежом.

Физико-химические показатели газообразного и растворенного технического ацетилена оговорены ГОСТ 5457 – 75. По содержанию допустимого количества примесей различают ацетилен растворенный, растворенный и газообразный; допустимое содержание примесей (в объемных долях) соответственно равно:

  • воздуха и других малорастворимых в воде газов – не более 0,9, 1,0, 1,5;
  • фосфористого водорода – 0,01; 0,04; 0,08;
  • сероводорода – 0,005; 0,05; 0,15;
  • водяных паров при 20°С и 760 мм рт. ст. – 0,5; 0,6.

Технический растворенный ацетилен транспортируют в стальных баллонах. Допустимое максимальное давление в баллонах не должно вревышать 13,4 кгс/см 2 при температуре –5°С и давлении 760 мм рт. ст. и 30 кгс/см 2 при температуре+40°С и давлении 760 мм рт. ст. Остаточное давление в баллоне при тех же параметрах не должно быть меньше соответственно 0,5 и З,0 кгс/см 2 .

Для газопламенной обработки металлов, наряду с ацетиленом, полученным из карбида кальция, применяют пиролизный ацетилен, получаемый из природного газа термоокислительным пиролизом метана с кислородом. Пиролизный ацетилен также хранят и транспортируют в баллонах в растворенном виде. Наполнитель и растворитель для пиролизного ацетилена тот же, что и для ацетилена из карбида кальция.

При применении растворенного ацетилена по сравнению с газообразным обеспечиваются наибольший коэффициент использования карбида, чистота рабочего места сварщика, устойчивая работа аппаратуры и безопасность в работе. Основным сырьем для получения ацетилена, используемого при газопламенной обработке металлов, является карбид кальция. Карбид кальция получают в электрических печах при взаимодействии обожженной извести с коксом или антрацитом. Расплавленный карбид кальция разливают в изложницы, где он застывает; затем его дробят в кусковых дробилках и сортируют по размерам кусков согласно ГОСТ 1460. Ацетилен получают в результате разложения (гидролиза) карбида кальция водой. Действительный «литраж» ацетилена из 1 кг технического карбида при 20°С и 760 мм рт. ст. не превышает 285 л и зависит от грануляции карбида. С увеличением размеров кусков карбида «литраж» увеличивается, однако скорость разложения его уменьшается, т. е. увеличивается длительность разложения карбида (табл. 1).

Содержание фосфористого водорода в ацетилене по объему не более 0,08%, содержание сульфидной серы не более 1,2%. В ГОСТ 1460 оговаривается также допустимое количество кусков карбида кальция других размеров в партиях указанной грануляции. Большой тепловой эффект реакции разложения карбида создает опасность сильного перегрева. Без отвода тепла при взаимодействии стехиометрического количества карбида кальция и воды реакционная масса разогревается до 700 – 800°С. Разложение карбида при недостаточном охлаждении и особенно в присутствии воздуха может привести к взрыву, поэтому необходимо процесс осуществлять при значительном избытке воды. Для разложения 1 кг карбида необходимо 5 – 20 л воды. Особое внимание необходимо обращать на наличие карбидной пыли в карбиде. Пыль разлагается почти мгновенно; за счет мгновенного разогрева может возникнуть взрыв ацетилена. Поэтому переработка пыли в обычных генераторах, не приспособленных для использования пыли, не допускается. Если содержание пыли значительно, карбид кальция перед загрузкой в генератор просеивают через сито с ячейками диаметром 2 мм. Накопившуюся пыль следует разложить на открытом воздухе в специальном сосуде вместимостью не менее 800 – 1000 л при интенсивном помешивании, одновременно высыпая не более 250 г карбидной пыли. Воду следует менять после разложения пыли в количестве до 100 кг.

Карбид кальция транспортируют и хранят в железных барабанах с толщиной стенки не менее 0,51 мм и массой 50 – 130 кг. Боковую поверхность барабанов делают гофрированной для большей жесткости. Карбид кальция интенсивно поглощает влагу даже из воздуха, поэтому при плохой герметичности тары возможно образование ацетилена непосредственно в барабане. Герметичность барабанов следует тщательно проверять; при перевозке барабанов на открытых машинах необходимо покрывать барабаны брезентом. При обнаружении повреждения барабана, карбид должен быть пересыпан в другую герметичную тару.

При обслуживании стационарных генераторов карбид из барабанов пересыпают в специальные приемники-бункеры. Вскрытие барабанов на станции, как правило, механизировано. Для этих целей применяют станки, в которых верхняя крышка вырезается специальным режущим роликом или клиновыми ножами. Ножи и ролик изготовляют из неискрящегося материала. Кроме того, к месту реза подается масло или азот.

Транспортировка карбида кальция в барабанах для стационарных генераторов производительностью свыше 20 м 3 /ч экономически не оправдана, так как раскупорка барабанов занимает значительное время; накапливается большое количество порожней тары, которая вторично не может быть использована; потери карбида за счет его дробления при перекатывании барабанов и последующего отсева от пыли значительны. Поэтому можно считать наиболее перспективным контейнерный способ перевозки и хранения карбида для стационарных установок. При газопламенной обработке алюминия, латуни, свинца и других металлов, имеющих температуру плавления ниже температуры плавления стали, в качестве горючего газа целесообразно применять не ацетилен, а газы – заменители ацетилена или жидкие горючие. Основные физические и тепловые свойства горючих газов приведены в табл. 2.

Таблица 1. Физико-химические показатели карбида кальция

Таблица 2. Основные физические и тепловые свойства горючих газов

Наименование горючего газа и химическая формула

Низшая теплота сгорания при 20°С и 760 мм рт. ст., ккал/м з

Температура пламени смеси с кислородом, °С

Коэффициент замены ацетилена

Плотность при 20°С и 760 мм рт. ст., кг/м 3

Критическое давление, кгс/см 2

Температура,°С

Пределы взрываемости, % содержания горючего в смеси

Оптимальное соотношение между кислородом и другим горючим в смеси

Относительная скорость распространения пламени с воздухом

критическая * 1

плавления

с воздухом

с кислородом

Ацетилен С 2 Н 2

Водород Н 2

Метан СН 4

Этан С 2 Н 6

Пропан С 3 Н 8

Бутан С 4 Н 10

Пропан-бутан

Этилен С 2 Н 4

Окись углерода СО

Сланцевый газ * 2

Коксовый газ * 2

Природный газ * 2 (метан 98%)

Нефтяной (попутный) газ

Городской газ * 2

Пиролизный газ

МАПП или МАФ

Пары бензина (~С 7 Н 15)

10 тыс. ккал/кг

0,7-0,74 кг/л

Пары керосина (~С 7 Н 14)

10 тыс. ккал/кг

0,79-0,82 кг/л

*1 Критической температурой называется такая температура, выше которой газ не переходит в жидкое состояние ни при каком давлении.

*2 Для горючих газовых смесей приводимые данные относятся к средним составам этих газов.

Широкие пределы изменения плотности, температуры пламени и теплоты сгорания объясняются изменяющимся химическим составом указанных газов, зависящим от месторождения или места производства.

Метилацетилен-пропадиен МАПП (широко применяемый в США) - смесь горючих газов; по физическим свойствам близок к пропану. Пределы взрываемости МАПП в смеси с воздухом 3,4 - 10,8%, в смеси с кислородом 2,5 - 60%. Смеси метилацетилена и пропадиена термодинамически нестойки, поэтому в состав МАППа вводят стабилизатор. Распад метилацетилена, аналогично ацетилену, происходит с большим выделением тепла. Температура пламени МАПП (2900°С) близка к температуре ацетилена. МАПП используют для кислородной резки и сварки и других газопламенных процессов.

Горючее МАФ - метилацетиленовая пропадиеновая фракция является отходом олифинового производства, а также отходом производства этилена и моновинилацетилена. Эта фракция содержит 48 - 75% смеси метилацетилена и пропадиена и стабилизаторы: 3% пропилена, 15% пропана, 7% других углеводородов. Пределы взрываемости для МАФа те же, что и для МАППа. МАФ нечувствителен к удару. Баллоны с МАФом не взрываются, находясь рядом с горящим баллоном. Смесь инертна при температуре до 215°С и давлении до 20 кгс/см 2 . При соприкосновении с медью образуются взрывоопасные соединения - ацетилениды меди. Скорость распространения пламени МАФ равна 470 см/с. Вместимость баллонов для сжиженных газов 40 или 55 дм 3 ; толщина стенки 3 мм. Предельное рабочее давление (кгс/см 2)в баллонах для сжиженных газов различно: для пропана не более 16, для пропилена 20, для бутана и бутилена 3,8. Коэффициент наполнения баллонов сжиженными газами (в кгс/м 3) соответственно будет равен: 425 для пропана, 445 - пропилена, 448 - бутана и 526 - бутилена. Коэффициент наполнения обозначает массу газа в кг на 1 м 3 вместимости баллона и не должен превышать значений, указанных для каждого газа.

Ацетилен относится к одним из самых распространенных газов для сварки. Он обладает относительно невысокой стоимостью, если сравнивать с аргоновой сваркой и прочими современными методами. Главным отличием газа является высокая температура горения. С его помощью можно сваривать намного более толстые изделия, чем с другими газами. Технические характеристики ацетилена для сварки считаются одними из лучших, но опасность его применения усложняет процесс работы.

Плотность ацетилена ниже, чем у воздуха и сам он легче. Газ не имеет цвета, но у него сильный резкий запах, что помогает быстро обнаруживать утечки, если они появились. Главным негативным свойством является способность к самовоспламенению. Загорается ацетилен при температуре при 335 градусах Цельсия. Очень часто случаются взрывы газа. Из-за высокой взрывоопасности существует целый ряд требований техники безопасности. Энергия от взрыва будет большей, чем при использовании нитроглицерина или тротила, что вызовет большие разрушения.

Область применения

Горение ацетилена при сварке обеспечивает не только нужную температуру горения, но и достаточно высокий уровень защиты сварочной ванны от негативных факторов. В сравнение с природными газами, водородом и прочими разновидностями расходных материалов для сварки, ацетилен дает лучшую защиту. Его применяют как в бытовой, так и в промышленной отрасли. Коммунальные службы, занимающиеся сваркой труб, ремонтом металлоконструкций в домах и прочими процедурами соединения металла, используют ацетилен для самых сложных работ. Ремонтные мастерские и отделы сборки металлоконструкций также широко применяют данный газ. Применение ацетилена возможно практически во всех местах, где можно использовать газовую и полуавтоматическую сварку.

Преимущества

Популярность ацетилен заслужил благодаря ряду следующих преимуществ:

  • Применение газа, в сравнение с другими разновидностями, является выгодным с экономической точки зрения;
  • Есть возможность получать сырье не только закупая его в баллонах и заправляя их, но и добывать при помощи соответствующих генераторов, путем добавления воды на карбид кальция;
  • Горение ацетилена имеет самую большую температуру среди защитных газов.

При этом имеется ряд недостатков затрудняющих его использования во многих случаях:

  • Во время работы с этим газом получается высокая загазованность помещения, так что нужно сильное проветривание;
  • Много условий обеспечения безопасности для нормального хранения;
  • Высокий уровень взрывоопасности;
  • Из-за высокой температуры могут возникать такие виды дефектов как перегрев или пережог, особенно, при работе с тонкими металлами.

Формула ацетилена

Газ является непредельным углеводородом, который обладает тройной связью атомов углерода. Формула ацетилена – С2Н2. При этом структурная формула ацетилена выглядит следующим образом Н-С=С-Н, так как связь идет между атомами углерода.

Химические и физические свойства

В нормальных условиях газ является бесцветным. Он легче воздуха. В техническом ацетилене имеются добавки, которые придают ему резкий запах, но в чистом виде он ни чем не пахнет. Лучше всего газ растворяется в ацетоне, но в воде он мало растворим. Температура кипения достигает -83,6 градусов Цельсия.

Газ требует очень аккуратного обращения. Баллон может взорваться от обыкновенного удара при падении или при нагреве около 500 градусов Цельсия. Воспламениться струя может даже от статического электричества от пальца человеческой руки. Молярная масса ацетилена составляет 26 г/моль. Температура горения ацетилена в ядре пламени может составлять более 2600 градусов Цельсия.

Химические свойства ацетилена показывают, в какие реакции может вступать субстанция с другими веществами. В присутствии катализаторов, в частности солей ртути, газ образует уксусный альдегид. Благодаря наличию тройной связи, молекулы вещества имеют большой запас энергии. Это обеспечивает ей высокую теплоту сгорания, которая составляет 14 000 ккал/м 3 . Если при сгорании добавить струю кислорода, то температура пламени достигнет более 3100 градусов Цельсия. Газ может полимеризироваться в такое вещество как бензол и прочие органические соединения, к примеру, винилацетилен или полиацетилен. Полимеризация в бензол происходит при температуре в 500 градусов Цельсия и при наличии графита. Если в качестве катализатора использоваться трикарбонил никеля, то данная реакция может пройти при температуре в 65 градусов Целься. Ацетилен обладает очень сильными кислотными свойствами. Атомы водорода могут легко отщепиться в качестве протонов. В эфирном растворе металмагнийбромида данный газ вытесняет метан. В сочетании с солями одновалентной меди и серебра ацетилен образует взрывчатый нерастворимый осадок.

Состав

Горение ацетилена и прочие его практические свойства во многом зависят от состава. Даже небольшие отклонения от нормы могут привести к тому, что газ поменяет свои характеристики. Поэтому, выделяют несколько основных сортов, отличающихся друг от друга по своему составу.

Состав ацетилена газообразного технического:

  • Основной газ – 98,5%;
  • Воздух – 1,4%;
  • Фосфорный водород – 0,08%;
  • Сероводород – 0,05%.

Растворенное вещество первого сорта марки Б должно обладать следующим составом:

  • Основной газ – 99,1%;
  • Воздух – 0,8%;
  • Фосфорный водород – 0,02%;
  • Сероводород – 0,005%.

Растворенное вещество второго сорта марки Б должно обладать следующим составом:

  • Основной газ – 98,8%;
  • Воздух – 1%;
  • Фосфорный водород – 0,05%;
  • Сероводород – 0,05%.

Растворенное вещество марки А должно обладать следующим составом:

  • Основной газ – 99,5%;
  • Воздух – 0,5%;
  • Фосфорный водород – 0,005%;
  • Сероводород – 0,002%.

Технология и режимы сварки

Перед началом сварки нужно подобрать баллон с ацетиленом и понять саму его конструкцию.

Потом подбирается горелка требуемого размера от 0 до 5. Толщина этого инструмента определяет расход газа, а также ширину образуемого шва. Чтобы проверить готовность изделия к работе, ее нужно продуть ацетиленом до тех пор, чтобы почувствовать его запах.

Поджог газа осуществляется еще до добавления кислорода. После загорания можно добавить понемногу струю кислорода, пока не образуется устойчивое пламя. Выходное давление основного газа должно быть до 4 атмосфер, а дополнительного – до 2 атмосфер. Затем подбирается мощность пламени согласно толщине свариваемого металла.

Заранее очищенные заготовки предварительно прогреваются пламенем горелки до нужной температуры. После этого добавляется , которая вместе с основным металлом образует сварочную ванну. Процесс сварки может проводиться как правым, так и левым способом. После окончания процедуры горение ацетилена поможет постепенному охлаждению шва с подогревом.

Заключение

Разбираясь, для чего нужен ацетилен в сварочной области, в первую очередь нужно думать о безопасности. Отличные практические качества и низкая стоимость газа не позволяют отказаться от него полностью из-за взрывоопасности. Любой специалист может оценить все преимущества работы с ним, но сложности хранения затрудняют его применение в домашних условиях.

Ацетилен - бесцветный горючий газ C 2 H 2 с атомной массой 26,04, немного легче воздуха. Обладает резким запахом.

В промышленности ацетилен обычно получают из карбида кальция (CaC 2) при разложении последнего водой.

Ацетилен самовоспламеняется при температуре 335°С, смесь ацетилена с кислородом воспламеняется при температуре 297-306°С, смесь ацетилена с воздухом - при температуре 305-470°С.

Ацетилен взрывоопасен при следующих условиях:

  • при увеличении температуры более 450-500°С и давления более 1,5-2 ат (около 150-200 кПа);
  • при атмосферном давлении ацетилено-кислородная смесь с содержанием ацетилена от 2,3 до 93% взрывается от искры, пламени, сильного местного нагрева и др.;
  • при аналогичных условиях смесь ацетилена с воздухом взрывается при содержании в ней ацетилена от 2,2 до 80,7%;
  • в результате длительного соприкосновении ацетилена с серебром или медью образуется взрывчатое ацетиленистое серебро или медь, взрывающиеся при повышении температуры или ударе.

Взрыв ацетилена способен вызвать значительные разрушения и тяжелые несчастные случаи: при взрыве 1 кг ацетилена выделяется примерно в два раза больше тепла, чем при взрыве 1 кг тротила и примерно в 1,5 раза больше, чем при взрыве 1 кг нитроглицерина.

Меры безопасности при работе с ацетиленом

  • содержание ацетилена в воздухе рабочей зоны необходимо непрерывно контролировать автоматическими приборами, сигнализирующими о превышении допустимой взрывобезопасной концентрации ацетилена в воздухе, равной 0,46%;
  • при работе с ацетиленовыми баллонами поблизости не должно быть открытого пламени или отопительной системы; запрещается работать с баллонами, находящимися в горизонтальном положении, с незакрепленными баллонами, с неисправными баллонами; необходимо использовать неискрящийся инструмент, освещение и электрическое оборудование только во взрывобезопасном исполнении;
  • в случае обнаружения утечки ацетилена из баллона (по запаху и звуку) необходимо по возможности быстро закрыть вентиль баллона специальным неискрящимся ключом;
  • при нагреве баллон с ацетиленом может взорваться с крайне разрушительными последствиями; в случае пожара необходимо по возможности удалить из опасной зоны холодные баллоны с ацетиленом, оставшиеся баллоны постоянно охлаждать водой или специальными составами до полного остывания; при загорании ацетилена, выходящего из баллона, необходимо по возможности быстро закрыть вентиль баллона специальным неискрящимся ключом и поливать баллон водой до полного остывания; при сильном возгорании пожаротушение необходимо производить с безопасного расстояния; при пожаротушении рекомендуется применять огнетушители с содержанием флегматизирующей концентрации азота 70% по объему, диоксида углерода 57% по объему, водяные струи, песок, сжатый азот, асбестовое полотно, токораспыленную пену и воду; при тушении сильного пожара используются огнезащитные костюмы, противогазы и т.п.

Применение ацетилена при сварке

Ацетилен - основной горючий газ, используемый при газовой сварке , а также широко применяется для газовой резки (кислородной резки). Температура ацетилено-кислородного пламени может достигать 3300°C. Благодаря этому ацетилен по сравнению с более доступными горючими газами (пропан-бутаном, природным газом и др.) обеспечивает более высокое качество и производительность сварки.

Снабжение постов ацетиленом для газовой сварки и резки может осуществляться

  • от баллонов с ацетиленом и
  • от ацетиленового генератора.

Для хранения ацетилена обычно используются стандартные баллоны емкостью 40 л, окрашенные в белый цвет, с надписью «Ацетилен» красного цвета (ПБ 10-115-96, ГОСТ 949-73). Согласно ГОСТ 5457-75 для газопламенной обработки металлов применяется технический ацетилен растворенный марки Б и газообразный.

Таблица. Характеристики марок технического ацетилена (ГОСТ 5457-75), используемого при сварке и резке.

Параметр Ацетилен технический
растворенный марки Б газообразный
первого сорта второго сорта
Объемная доля ацетилена C 2 H 2 , %, не менее 99,1 98,8 98,5
Объемная доля воздуха и других газов, малорастворимых в воде, %, не более 0,8 1,0 1,4
Объемная доля фосфористого водорода PH 3 , %, не более 0,02 0,05 0,08
Объемная доля сероводорода H 2 S, %, не более 0,005 0,05 0,05
Массовая концентрация водяных паров при давлении 101,3 кПа (760 мм рт. ст.) и температуре 20°С, г/м 3 , не более 0,5 0,6 не нормируется
что соответствует температуре насыщения, не выше (°C) -24 -22

Баллоны заполнены пористой массой, пропитанной ацетоном. Ацетилен хорошо растворяется а ацетоне: при нормальной температуре и давлении в 1 л ацетона растворяется 23 л ацетилена (в 1 л бензина растворяется 5,7 л ацетилена, в 1 л воды - 1,15 л ацетилена). Пористая масса выполняет следующие функции:

  • повышает безопасность при работе с баллоном - за счет пористой массы общий объем ацетилена разделен на отдельные ячейки; таким образом, вероятность распространения общего фронта горения и взрыва значительно уменьшается;
  • позволяет повысить количество ацетилена в баллоне, ускорить процесс его растворения при заполнении баллона и выделении при отборе газа - поскольку при использовании пористой массы, пропитанной ацетоном, обеспечивается большая поверхность взаимного контакта между газом и ацетоном.

В качестве пористых масс могут применяться активированный уголь, пемза, волокнистый асбест.

Таблица. Допустимое давление газа в баллоне в зависимости от температуры (при номинальном давлении 1,9 МПа / +20°С) (ГОСТ 5457-75)

Температура, °С -5 0 +5 +10 +15 +20 +25 +30 +35 +40
Давление в
баллоне,
не более
МПа 1,34 1,4 1,5 1,65 1,8 1,9 2,15 2,35 2,6 3
кгс/см 2 13,4 14 15 16,5 18 19 21,5 23,5 26 30

Таблица. Остаточное давление газа в баллоне, поступающем от потребителя (ГОСТ 5457-75)

40-литровые баллоны с максимальным давлением газа 1,9 МПа при температуре 20°С обычно заполняют 5-5,8 кг ацетилена (4,6-5,3 м 3 газа при температуре 20°С и давлении 760 мм рт. ст.). Масса ацетилена в баллоне определяется по разности масс баллона до и после наполнения газом. Объем ацетилена равен отношению его массы и плотности. Так, объем 5,5 кг ацетилена при температуре 20°С и давлении 760 мм рт. ст. составляет 5,5/1,09 = 5,05 м 3 .

Таблица. Сравнительные характеристики ацетилена, пропана и метилацетилен-алленовой фракции (МАФ)

Параметр ацетилен пропан МАФ
Чувствительность к удару, безопасность нестабилен стабилен стабилен
Токсичность незначительная
Предел взрываемости в воздухе (%) 2,2-81 2,0-9,5 3,4-10,8
Предел взрываемости в кислороде (%) 2,3-93 2,4-57 2,5-60
Температура пламени (°С) 3087 2526 2927 *
Реакции с обычными металлами избегать сплавов, содержащих более 70% меди незначительные ограничения избегать сплавов, содержащих более 65-67% меди
Склонность к обратному удару значительная незначительная незначительная
Скорость сгорания в кислороде (м/с) 6,10 3,72 4,70
Плотность газа (кг/м 3) 1,17 (при 0°С)
1,09 (при 20°С)
2,02 (при 0°С) 1,70 (при 0°С) *
Плотность в жидком состоянии при 15,6°С (кг/м 3) - 513 575
Отношение расхода кислорода к горючему газу (м 3 /м 3) при нормальном пламени 1-1,2 3,50 2,3-2,5
* - данные ОАО «Нафтан» Завод «Полимир» (г. Новополоцк, Беларусь), производителя МАФ

, синтез ацетилена , свойства ацетилена , воспламенение ацетилена , применение ацетилена

Название этого вещества связано со словом «уксус». Сегодня это единственный широко используемый в промышленности газ, горение и взрыв которого возможны в отсутствие кислорода или других окислителей. Сгорая в кислоте, он дает очень горячее пламя — до 3100°С.

Как синтезировался ацетилен

Впервые ацетилен получил в 1836 Эдмунд Дэви, двоюродный брат знаменитого Гемфри Дэви. Он подействовал водой на карбид калия: К 2 С 2 + Н 2 О=С 2 Н 2 + 2КОН и получил новый газ, который назвал двууглеродистым водородом. Этот газ был, в основном, интересен химикам с точки зрения теории строения органических соединений. Один из создателей так называемой теории радикалов Юстус Либих назвал группу атомов (т.е. радикал) С 2 Н 3 ацетилом.

На латыни acetum – уксус; молекула уксусной кислоты (С 2 Н 3 О+О+Н, как записывали тогда ее формулу) рассматривалась как производное ацетила. Когда французский химик Марселен Бертло в 1855 сумел получить «двууглеродистый водород» сразу несколькими способами, он назвал его ацетиленом. Бертло считал ацетилен производным ацетила, от которого отняли один атом водорода: С 2 Н 3 – Н = С 2 Н 2 . Сначала Бертло получал ацетилен, пропуская пары этилена, метилового и этилового спирта через раскаленную докрасна трубку. В 1862 он сумел синтезировать ацетилен из элементов, пропуская водород через пламя вольтовой дуги между двумя угольными электродами. Все упомянутые методы синтеза имели только теоретическое значение, и ацетилен был редким и дорогим газом, пока не был разработан дешевый способ получения карбида кальция прокаливанием смеси угля и негашеной извести: СаО + 3С = СаС 2 + СО. Это произошло в конце XIX века.

Тогда ацетилен стали использовать для освещения. В пламени при высокой температуре этот газ, содержащий 92,3% углерода (это своеобразный химический рекорд), разлагается с образованием твердых частичек углерода, которые могут иметь в своем составе от нескольких до миллионов атомов углерода. Сильно накаливаясь во внутреннем конусе пламени, эти частички обуславливают яркое свечение пламени - от желтого до белого, в зависимости от температуры (чем горячее пламя, тем ближе его цвет к белому).

Ацетиленовые горелки давали в 15 раз больше света, чем обычные газовые фонари, которыми освещали улицы. Постепенно они были вытеснены электрическим освещением, но еще долго использовались в небольших фонарях на велосипедах, мотоциклах, в конных экипажах.

В течение длительного времени ацетилен для технических нужд (например, на стройках) получали «гашением» карбида водой. Полученный из технического карбида кальция ацетилен имеет неприятный запах из-за примесей аммиака, сероводорода, фосфина РН 3 , арсина AsH 3 .

Ацетилен сегодня: способы получения

Сейчас широко применяются методы получения ацетилена из природного газа – метана:

электрокрекинг (струю метана пропускают между электродами при температуре 1600°С и быстро охлаждают, чтобы предотвратить разложение ацетилена); термоокислительный крекинг (неполное окисление), где в реакции используют теплоту частичного сгорания ацетилена.

Свойства ацетилена

В химически чистом виде ацетилен обладает слабым эфирным запахом. Технический ацетилен, благодаря наличию в нем примесей, в частности фосфористого водорода, имеет резкий специфический запах. Ацетилен легче воздуха. Газообразный ацетилен – бесцветный газ плотностью при 0 °С и 101,3 кПа (760 м рт. ст.) 1,173кг/м 3 . Молекулярная масса – 26,038.

Ацетилен способен растворяться во многих жидкостях. Его растворимость зависит от температуры: чем ниже температура жидкости, тем больше она способна «забрать» ацетилена. В практике производства растворенного ацетилена используют ацетон, который при температуре 15 °С растворяет до 23 объемов ацетилена.

Единственный широко используемый в промышленности газ, относящийся к числу немногих соединений, горение и взрыв которых возможны в отсутствии кислорода или других окислителей.

Еще в 1895 г. А.Л.Ле Шателье обнаружил, что ацетилен, сгорая в кислоте, дает очень горячее пламя (до 3150°С), поэтому его широко используют для сварки и резки тугоплавких металлов. Сегодня применение ацетилена для газопламенной обработки металлов испытывает сильную конкуренцию со стороны более доступных горючих газов (природный газ, пропан–бутан и т.д.). Однако преимущество ацетилена - в самой высокой температуре горения. В таком пламени очень быстро расплавляются даже толстые куски стали. Именно поэтому газопламенная обработка ответственных узлов машиностроительных конструкций производится только с помощью ацетилена, который обеспечивает наивысшую производительность и качество процесса сварки.

Кроме того, ацетилен широко используется в органическом синтезе разнообразных веществ - уксусного альдегида и уксусной кислоты, синтетических каучуков (изопренового и хлоропренового), поливинилхлорида и других полимеров.

Похожие публикации