Графы. Элементы графов. Виды графов и операции над ними. Представление информации в форме графа Дайте определение понятию граф в информатике

Вы, вероятно, имеете представление о компьютерных сетях. Возможно, компьютеры в школьном кабинете информатики объединены в локальную сеть или вы работали в Интернете, или пользовались услугами электронной почты. Понятно, что сеть образуется только тогда, когда компьютеры каким-либо образом соединены между собой каналами передачи данных. Размещение абонентов сети (подключённых к ней компьютеров или других систем автоматической обработки данных) и способ их соединения друг с другом называется конфигурацией сети. Продемонстрировать различные типы конфигураций вычислительных сетей можно, например, с помощью таких информационных моделей, как графы. Граф -- совокупность точек, соединённых между собой линиями. Точки называют вершинами графа. Они могут изображаться точками, кружочками, прямоугольниками и пр. Линии, соединяющие вершины, называются дугами (если задано направление от одной вершины к другой) или рёбрами (если направленность двусторонняя, то есть направления равноправны). Две вершины, соединенные ребром (дугой) называются смежными. Вершины и рёбра графа могут характеризоваться некоторыми числовыми величинами. Например, может быть известна длина ребра или «стоимость прохождения» по нему. Такие характеристики называют весом, а граф называется взвешенным.

Граф однозначно задан, если заданы множество его вершин, множество рёбер (дуг) и указано, какие вершины какими рёбрами (дугами) соединены и, возможно, указаны веса вершин и рёбер (дуг). Определение всех этих элементов и составляет суть формализации в этом случае.

Пример

На рис.3 представлены различные типы конфигураций локальных вычислительных сетей (ЛВС), являющиеся информационными моделями структур ЛВС, представленными в виде графов:

* шинная конфигурация, когда к незамкнутому каналу с некоторыми интервалами подключаются отдельные абоненты (К) информация от абонента-источника распространяется по каналу в обе стороны;

* кольцевая конфигурация, когда каждый абонент непосредственно связан с двумя соседними абонентами, а информация передаётся по замкнутому кольцу, чаще всего в одну сторону;

* звездообразная конфигурация, в центре которой находится центральный коммутатор (ЦК), который последовательно опрашивает абонентов и предоставляет им право на обмен данными;

* древовидная конфигурация образуется подсоединением нескольких простых каналов связи к одному магистральному;

* полносвязная конфигурация обеспечивает выбор наиболее быстрого маршрута связи между абонентами и удобна там, где управление оказывается достаточно сложным.

Рис.3

Наиболее наглядно граф задаётся рисунком. Однако не все детали рисунка одинаково важны. В частности, несущественны геометрические свойства рёбер (длина, кривизна и так далее), форма вершин (точка, кружок, квадрат, овал и пр.) и взаимное расположение вершин на плоскости. Так, на рис.4 представлены два изображения одного и того же графа. Все вершины и ребра часто задаётся в виде сопровождающей надписи на вершине или линии, но, введя условные обозначения, их можно задать формой или цветом вершины, толщиной, типом или цветом линии и т. п.

Рис. 4

Информационную модель в форме графа можно использовать для наглядного представления взаимосвязей, существующих между элементами объекта моделирования. Таким образом, граф -- наиболее удобная форма для моделирования структуры объекта, хотя в такой форме можно моделировать и внешний вид, и поведение объекта.

Пример

На рис.5 представлены модели молекул бутана и изобутана, каждая из которых имеет формулу С4Н10, то есть состоит из 4 атомов углерода и 10 атомов водорода. Имея одну и ту же формулу, бутан и изобутан имеют различные химические свойства, так как способы соединения атомов (структура молекул) различны. Расположение атомов в молекуле при различных способах их соединения хорошо представимо графом.

Рис.5

Заметим, что в химии для обозначения таких веществ часто используются и структурные формулы. Порядок соединения атомов изображается в структурной формуле чёрточками (связь между водородом и остальными атомами обычно не указывается). Подумайте сами, можно ли считать структурную формулу одной из разновидностей графа. В форме графа удобно отображать взаимосвязи понятий, относящихся к одной области деятельности или познания.

Пример

Рассмотрите граф понятий темы «Четырёхугольники» из курса геометрии (рис.6). Не правда ли, хорошая «шпаргалка»?

Рис.6.

В практической деятельности модели в форме графов часто используются для представления видов и порядка выполнения работ. Возможно, вам знакомы такие термины, как «сетевой график работ», «сетевой график строительства». Часто наряду со словесным или табличным описанием сетевые графики сопровождаются и изображением в виде графа, вершинами которого являются конкретные виды работ, а дугами задаётся возможный порядок их выполнения.

Пример

Сетевые графики строительства хорошо демонстрируют, какие работы могут выполняться одновременно, а какие требуют обязательного завершения предыдущих этапов. Анализируя такие графы, можно рассчитать время, необходимое для завершения всей работы, спланировать, сколько, когда и на какие работы направить специалистов и технику, определить наиболее «узкие» участки и уделить им особое внимание.

Для машинной обработки более удобным является символическое представление графов в виде списка рёбер с указанием, какие вершины это ребро соединяет, а также табличное представление, где строки и столбцы -- названия вершин, а значения ячеек указывают на то, соединены данные вершины или нет.

Пример

Графы, представленные на рис.7 могут быть описаны, например, следующими способами. Символическая запись: а(1,2) b(l,4) c(2,4) d(3,5) e(4,5) ,(3,4)

Табличная запись:

Рис.7.

Представление данных в форме дерева

Особым видом графа является дерево. Данная форма модели применяется тогда, когда элементы моделируемого объекта находятся в состоянии какого-либо подчинения и соподчинения, когда есть отношение иерархичности.

Пример

Модель управления предприятием (школой, театральным коллективом и т. д.) очень удобно представлять в виде дерева.

Пример

Вам хорошо известно понятие «родословное дерево» и вы можете изобразить в такой форме ваши родственные отношения.

Пример

Каталог файлов на диске, также как и библиотечный каталог -- примеры информационных моделей в форме дерева. Дерево -- это граф, предназначенный для отображения таких связей между объектами, как вложенность, подчиненность, наследование и т. п.

Строится он следующим образом

Сначала рисуем «главную» вершину, которая не зависит ни от одной другой вершины. Эта вершина называется корнем дерева и является единственной вершиной 1-го уровня. Далее добавляем вершины 2-го уровня. Их может быть сколько угодно, и все они обязательно связаны с корнем -- вершиной 1-го уровня, но не связаны между собой. На следующем шаге добавим вершины 3-го уровня. Каждая из них будет связана ровно с одной вершиной 2-го уровня (больше ни с одной другой вершиной). К любой вершине 2-го уровня может быть подсоединено сколько угодно вершин 3-го уровня (в том числе, ни одной). Следующий шаг -- добавка вершин 4-го уровня, каждая из которых будет связана ровно с одной вершиной 3-го уровня (и не связана больше ни с чем). И так далее. На каждом шаге добавляем вершины очередного уровня, каждая из которых будет связана ровно с одной вершиной предыдущего уровня и не будет иметь никаких иных связей. Полученный граф напоминает ветвящийся куст, который «растет сверху вниз»: верхние уровни имеют меньшие номера, нижние -- большие. Вообще говоря, дерево может быть и неориентированным графом, но чаще дерево ориентировано, причем дуги направлены от верхних вершин к нижним. Верхняя вершина называется предком для связанных с ней нижних вершин, а нижние вершины -- потомками соответствующей верхней вершины. На любом дереве существует единственная вершина, не имеющая предка, -- корень -- и может быть сколько угодно вершин, не имеющих потомков, -- листьев. Все остальные вершины имеют ровно одного предка и сколько угодно потомков. Если не принимать во внимание направленность связей, то в дереве из любой вершины можно по линиям дойти до любой другой вершины, причем по одному единственному пути. В виде дерева удобно изображать системы, в которых нижние вершины в каком-то смысле «подчинены» верхним. Верхняя вершина может изображать начальника, нижние -- подчиненных; верхняя -- систему, нижние -- ее компоненты; верхняя -- множество объектов, нижние -- входящие в него подмножества; верхняя вершина -- предка, нижние -- потомков и т. д. Формализация в случае построения дерева (иерархического графа) сводится к выявлению основного (главного, центрального) элемента рассматриваемого объекта (вершина нулевого уровня, которую часто называют корнем), элементов, которые находятся в непосредственном подчинении от основного (вершины 1-го уровня). Затем определяются вершины, находящиеся в непосредственном «подчинении» от вершин 1-го уровня (вершины 2-го уровня) и так далее. Изображать построенное дерево отношений можно в любом направлении -- это уже дело эстетического вкуса разработчика модели. В научной и учебной деятельности с помощью деревьев часто представляют классификацию изучаемых объектов.

Классифицирование -- распределение объектов по классам в зависимости от их общих признаков, фиксирующее закономерные связи между классами объектов в единой системе данной отрасли знания.

Классификация (от лат. classis -- разряд + facere -- делать) -- система соподчиненных понятий (классов объектов, явлений) в какой-либо отрасли знания, составленная на основе учёта общих признаков объектов и закономерных связей между ними.

Классификация позволяет ориентироваться в многообразии объектов и является источником знания о них. Очень важен выбор основания классификации -- то есть признака, на основании которого объекты разбиваются на классы. Выбор разных оснований приводит к разным классификациям.

Пример

На рис.8 вы видите классификацию, предложенную Григорием Великим, которая призвана была показать, что человек имеет что-то общее со всеми видами существующих в мире вещей, и поэтому его справедливо называют «вселенной в миниатюре». Обратите внимание, что объекты здесь разбиваются всегда на два класса. Такая классификация носит название дихотомической.

Рис.8.

Пример

Представленная на рис.9 классификация принтеров построена с использованием различных оснований деления

Рис.9

Пример

Важным видом исторических классификаций является построение родословных или генеалогических деревьев. Они бывают самого разного вида: с указанием только прямых потомков (рис.10); с включением жён (мужей) и их родственников и др.

Рис.10 Родословное дерево великих и удельных князей Владимирских и Московских, XIII--XIV века (фрагмент)

В скобках приведены известные даты жизни; крест указывает на год смерти; двойным контуром обведены имена князей, занимавших московский престол. Рассмотренные выше реляционная (табличная), сетевая (графовая) и иерархическая (древовидная) модели являются основными для представления данных в базах данных, а программные комплексы, которые позволяют создавать, обновлять, сохранять базы данных и обслуживать запросы пользователей к ним, называются соответственно реляционной, сетевой, иерархической системами управления базами данных (СУБД). При описании сложных объектов, как правило, используется комбинация различных моделей данных.

Лекция 4. Графы

4.1.Графы. Определение, виды графов

4.2. Свойства графов

Программные положения

Существует несколько причин нарастания интереса к теории графов. Неоспорим тот факт, что теория графов применяется в таких областях, как физика, химия, теория связи, проектирование вычислительных машин, электротехника, машиностроение, архитектура, исследование операций, генетика, психология, социология, экономика, антропология и лингвистика. Эта теория тесно связана также со многими разделами математики, среди которых - теория групп, теория матриц, численный анализ, теория вероятностей, топология и комбинаторный анализ. Достоверно и то, что теория графов служит математической моделью для всякой системы, содержащей бинарное отношение. Графы действуют притягательно и обладают эстетической привлекательностью благодаря их представлению в виде диаграмм. Хотя в теории графов много результатов, элементарных по своей природе, в ней также громадное изобилие весьма тонких комбинаторных проблем, достойных внимания самых искушенных математиков. (Ф.Харари «Теория графов»)

Обратите внимание на удобство и возможность широкое использования графов в прикладных задачах

Литература

Контрольные вопросы

  1. Что такое граф?
  2. Что называют вершиной и ребром графа?

3. Можно ли обвести данную схему, не отрывая карандаша и не проходя дважды никакие ребра

  1. Может ли сумма степеней вершин графа быть нечетным числом?
  2. Можно ли организовать турнир между 11 командами, так, чтобы каждая сыграла ровно 5 матчей?

6. Покажите равносильность определений из п.4.1.(6) (что описывают один и тот же объект)

7.Покажите, что изоморфны графы

8. Покажите, что изоморфизм есть отношение эквивалентности на графах.

9.На какое минимальное количество частей нужно разделить кусок проволоки, чтобы из нее можно было сделать каркас куба

10. Покажите, что граф является планарным

Графы. Определение, виды графов

Отцом теории графов является Л.Эйлер A707-1782), решивший в 1736 г. широко известную в то время задачу, называвшуюся проблемой кёнигсбергских мостов.

В городе Кенигсберге было два острова, соединенных семью мостами с берегами реки Преголя и друг с другом так, как показано на рис. 4.1.(1) (A,D – острова, B,C – берега реки). Задача состояла в следующем: найти маршрут прохождения всех четырех частей суши, который начинался бы с любой из них, кончался бы на этой же части и ровно один раз проходил по каждому мосту. Легко, конечно, попытаться решить эту задачу эмпирически, производя перебор всех маршрутов, но все попытки окончатся неудачей. Л.Эйлеру удалось найти решение этой задачи заключается в доказательстве невозможность такого маршрута.

Для доказательства того, что задача не имеет решения, Эйлер обозначил каждую часть суши точкой (вершиной), а каждый мост - линией (ребром), соединяющей соответствующие точки. Получился «граф». Этот граф показан на рис. 4.1.(2), где точки

отмечены теми же буквами, что и четыре части суши на рис. 4.1(1). Утверждение о несуществовании «положительного» решения у этой задачи эквивалентно утверждению о невозможности обойти специальным образом граф, представленный на рис. 4.1(2).

В таком случае задача приобретает следующую формулировку: начиная с любой вершины, проходя по каждому ребру только один раз, вернуться в исходную вершину.

Примером другой проблемы, которую можно промоделировать на основе теории графов, является задача о снабжении трех домов тремя видами коммунальных услуг. Согласно условию задачи к каждому из трех домов необходимо подключить три вида коммунальных услуг, например, воду, газ и электричество, посредством подземных линий труб и кабелей. Вопрос состоит в том, можно ли обеспечить эти три дома коммунальными услугами без пересечения линий снабжения. Граф, моделирующий данную задачу, показан на рис. 4.1(3) (Эта известная модельная задача иногда формулируется как задача про дома и колодцы)

Аналогичная задача более практического характера возникает при создании микросхем. В них пересечение проводов на каждом уровне является нежелательным.

Определение 4.1(1)

Граф есть конечное множество V, называемое множеством вершин, и множество Е двухэлементных подмножеств множества V. Множество Е называется множеством ребер. Элемент множества Е называется ребром. Граф обозначается G(V, E). Элементы а и b множества V называются соединенными, или связанными ребром {а, b}, если .

Иначе говоря, граф – это схема, состоящая из точек, некоторые из которых соединены отрезками.

Примерами графов являются схема метро, генеалогическое дерево, карта автомобильных дорог и др.

Определения 4.1(2)

Если {а, b} - ребро, тогда вершины а и b называются концами ребра {а, b}. Ребро {а, b} называют также инцидентным к вершинам а и b. Обратно, говорят, что вершины а и b инцидентны к ребру {а, b}. Две вершины называются смежными (соседними ), если они являются концами ребра, или, что то же самое, если они инцидентны к одному ребру. Два ребра называются смежными, если они инцидентны к общей вершине.

Если разрешено наличие нескольких ребер между двумя точками, граф называется мультиграфом.

Если в графе все вершины соседние, граф называется полным .

Граф с одной вершиной и без ребер (состоящий из 1 точки – вершины), называется тривиальным.

Определение 4.1(3)

Степенью вершины v обозначается deg(v), называется количество ребер, инцидентных этой вершине (исходящих из нее).

Вершина степени 0 (то есть из вершины не исходит ни одного ребра, это «одинокая» точка) называется изолированной.

Вершина степени 1 называется висячей.

Вершины могут быть четными и нечетными.

Определения 4.1.(4)

Путь (между вершинами) – последовательность ребер и промежуточных вершин, их соединяющая

Длина пути – количество ребер, входящих в путь

Простой путь – путь, в котором все ребра и вершины различны

Цикл (петля) – замкнутый путь ненулевой длины, в котором все вершины различны кроме начала, совпадающего с концом

Примеры 4.1(1).

1. Граф с множеством вершин V = {а,b,с} и множеством ребер Е {{а, b}, {b, с}} может быть изображен, как показано на рисунке 4.1(4) (Простой) путь между вершинами a и c включает ребра {a,b}, {b,c} и вершину c

Замечание: оба рисунка отражают одну и ту же ситуацию. С точки зрения графов в первую очередь имеет значение наличие связи между точками, а не ее геометрия.

2. Граф, у которого V = {a,b,c,d,e} и Е = {{а, b}, {а, е}, {b, е}, {b, d}, {b, с}, {с, d}},

может быть изображен диаграммой, показанной на рис. 4.1.(5). Граф содержит два цикла {b, e, a}, {b, c, d}.

3. На рис. 4.1.(6)вершины а и с – смежные и е 1 , е 2 и е 3 - смежные ребра, вершины а и f смежными не являются, а е 2 и е 5 не являются смежными ребрами. Вершины b, с и d имеют степень 2, в то время как вершины a и f имеют степень 3.

Вернемся теперь к задаче Эйлера. При обходе графа возможны 2 ситуации: начало и конец пути совпадают, вход и выход различны. Для того, чтобы пройти соответствующим образом граф (обвести рисунок, не отрывая карандаш, не пропуская и не обводя дважды никакие ребра):

В первом случае все вершины должны иметь четные степени, во втором – четными должны быть все вершины, кроме входа и выхода.

Пример 4.1.(2)

Можно ли пройти граф на рис. 4.1(4), не пропуская и не проходя дважды никакие ребра?

Степени всех вершин четны, кроме вершин с и j со степью 3. Соответственно, единственный путь обхода – имеющий вершины c и j началом и концом (или наоборот)

Во многих случаях необходимы графы, у которых ребра, по существу, представляют собой улицу с односторонним движением. Это означает, что если рассматривается ребро, выходящее из вершины а в вершину b, то его нельзя рассматривать выходящим из вершины b в вершину а. Например, если граф моделирует поток нефти в трубопроводе, и если нефть течет из пункта а в пункт b, нам не хотелось бы, чтобы поток был и в обратном направлении, из пункта b в пункт а.

Определение 4.1(5)

Ориентированный граф или орграф G , который обозначается через G(V, Е) состоит из множества V вершин и множества Е упорядоченных пар элементов из У, называемого множеством ориентированных ребер или просто ребер, если понятно, что граф ориентирован. Элемент множества Е называется ориентированным ребром. Если , то а называется начальной вершиной ребра (а, b), b называется конечной вершиной.

Пример 4.1(3)

Орграф, у которого V = {а, b, с, d] и Е = {(а, b), (b, с), (с, с), (c, d), (d,b),(c,d),(d,a)} изображен на рис.

Определение 4.1.(6)

Рассмотрим несколько равносильных определений графа дерево.

1) Это связный граф, не имеющий циклов (о свойстве связности см 4.2.)

2) Граф, в котором любые 2 вершины соединены простым путем

3) Связный граф, теряющий связность при удалении любого ребра

4) Граф, в котором ребер на 1 меньше, чем вершин

Примеры деревьев:

Достаточно развитое генеалогическое дерево образует дерево. Если начать с конкретной (хорошо известной) личности и провести ребра между каждым из родителей и каждым сыном или дочерью, это сформирует дерево. При построении генеалогического дерева, однако, необходимо быть очень осторожным, чтобы браки между дальними родственниками не образовывали циклов.

Свойства графов

Теорема 4.2(1).

Сумма степеней вершин графа всегда четная.

Доказательство

Поскольку каждое ребро графа имеет два конца, степень каждого конца увеличивается на 1 за счет одного ребра. Таким образом, в сумму степеней всех вершин каждое ребро вносит 2 единицы, поэтому сумма должна в два раза превышать число ребер. Следовательно, сумма является четным числом.

Теорема 4.2.(2)

В любом графе количество вершин нечетной степени четно.

Доказательство

Доказательство проведем методом от противного: предположив, что теорема не верна, найдем противоречие, из которого будет следовать, что теорема справедлива. Если теорема не верна, то имеется нечетное количество вершин, степени которых нечетны. Но сумма степеней вершин с четными степенями четна. Сумма степеней всех вершин есть сумма степеней вершин с нечетными степенями плюс сумма степеней вершин с четными степенями. Поскольку сумма нечетного числа и четного числа есть число нечетное, сумма степеней всех вершин нечетная. Но это противоречит теореме 4.1(1), поэтому мы пришли к противоречию. Следовательно, делаем вывод, что теорема справедлива.

Пример 4.2.(1)

Можно ли организовать футбольный турнир между 7 командами так, чтобы каждая сыграла ровно по 3 матча?

Нет, так как, если мы составим граф с 7 вершинами, и попытаемся вывести по 3 ребра из каждой вершины. Согласно теореме 4.2(2), такой граф построить невозможно.

Определение 4.2(1).

Изоморфными называются графы одинаковой структуры. Два графа G и Н изоморфны (записывается или иногда G=H), если между их множествами вершин существует взаимно однозначное соответствие, сохраняющее смежность. Например, G и H на рис. 4. 2(2) изоморфны при соответствии .

Иначе говоря, вершины каждого из таких графов можно занумеровать так, что вершины можно занумеровать так, что вершины его соседние тогда и только тогда, когда они соседние во втором.

Заметим, что изоморфизм есть отношение эквивалентности на графах.

Определения 4.2(2)

Граф называется связным , если в нем между любыми двумя вершинами есть путь.

Компонента связности – часть графа, которая сама по себе связна, но ее нельзя расширить так, чтобы она осталась связной

Связностью x=x(G) графа G называется наименьшее число вершин, удаление которых приводит к несвязному или тривиальному графу. Из определения следует, что связность несвязного графа равна 0, а связность связного графа, имеющего точку сочленения, равна 1. Полный граф нельзя сделать несвязным, сколько бы вершин из него ни удалять.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

«В математике следует помнить не формулы, а процесс мышления…»

Е. И. Игнатьев

Теория графов в настоящее время является интенсивно развивающимся разделом математики. Это объясняется тем, что в виде графовых моделей описываются многие объекты и ситуации, что очень важно для нормального функционирования общественной жизни. Именно этот фактор определяет актуальность их более подробного изучения. Поэтому тематика данной работы достаточно актуальна.

Цель исследовательской работы: выяснить особенности применения теории графов в различных областях знаний и при решении логических задач.

Цель определила следующие задачи:

    познакомиться с историей теории графов;

    изучить основные понятия теории графов и основные характеристики графов;

    показать практическое применение теории графов в различных областях знаний;

    рассмотреть способы решения задач с помощью графов и составить собственные задачи.

Объект исследования: сфера деятельности человека на предмет применения метода графов.

Предмет исследования: раздел математики «Теория графов».

Гипотеза. Мы предполагаем, что изучение теории графов может помочь учащимся решать логические задачи по математике, что определит их дальнейшие интересы.

Методы исследовательской работы:

В ходе нашего исследования были использованы такие методы, как:

1) Работа с различными источниками информации.

2) Описание, сбор, систематизация материала.

3) Наблюдение, анализ и сравнение.

4) Составление задач.

Теоретическая и практическая значимость данной работы определяется тем, что результаты могут быть использованы на информатике, математике, геометрии, черчении и классных часах, а также для широкого круга читателей, заинтересованных данной темой. Исследовательская работа имеет выраженную практическую направленность, так как в работе автором представлены многочисленные примеры применения графов во многих областях знаний, составлены свои задачи. Данный материал можно использовать на факультативных занятиях по математике.

ГЛАВА I. ТЕОРЕТИЧЕСКИЙ ОБЗОР МАТЕРИАЛА ПО ТЕМЕ ИССЛЕДОВАНИЯ

    1. Теория графов. Основные понятия

В математике «граф» можно изобразить в виде картинки, которая представляет собой некоторое количество точек, соединенных линиями. «Граф» происходит от латинского слова «графио» - пишу, как и известный дворянский титул.

В математике определение графа дается так:

Термин «граф» в математике определяется следующим образом:

Граф - это конечное множество точек - вершин , которые могут быть соединены линиями - ребрами .

В качестве примеров графов могут выступать чертежи многоугольников, электросхемы, схематичное изображение авиалиний, метро, дорог и т.п. Генеалогическое дерево также является графом, где вершинами служат члены рода, а родственные связи выступают в качестве ребер графа.

Рис. 1 Примеры графов

Число ребер, которое принадлежит одной вершине, называется степенью вершины графа . Если степень вершины нечетное число, вершина называется - нечетной . Если степень вершины число четное, то и вершина называется четной .

Рис. 2 Вершина графа

Нуль-граф - это граф, состоящий только из изолированных вершин, не соединенных ребрами.

Полный граф - это граф, каждая пара вершин которого соединена ребром. N-угольник, в котором проведены все диагонали, может служить примеров полного графа.

Если в графе выбрать такой путь, когда начальная и конечная точка совпадают, то такой путь называется циклом графа . Если прохождение через каждую вершину графа происходит не более одного раза, то цикл называется простым .

Если в графе каждые две вершины связаны ребром, то это связанный граф. Граф называется несвязанным , если в нем есть хотя бы одна пара несвязанных вершин.

Если граф связанный, но не содержит циклов, то такой граф называетсядеревом .

    1. Характеристики графов

Путь графа - это такая последовательность, в которой каждые два соседних ребра, имеющих одну общую вершину, встречаются только один раз.

Длина кратчайшей цепи из вершин a и b называется расстоянием между вершинами a и b.

Вершина а называется центром графа, если расстояние между вершиной а и любой другой вершиной является наименьшим и из возможных. Такое расстояние есть радиус графа.

Максимально возможное расстояние между двумя любыми вершинами графа называется диаметром графа.

Раскраска графов и применение.

Если внимательно посмотреть на географическую карту, то можно увидеть железные или шоссейные дороги, которые являются графами. Кроме этого на катре есть граф, который состоит из границ между странами (районами, областями).

В 1852 году английскому студенту Френсису Гутри поставили задачу раскрасить карту Великобритани, выделив каждое графство отдельным цветом. Из-за небольшого выбора красок Гутри использовал их повторно. Он подбирал цвета так, чтобы те графства, которые имеют общий участок границы, обязательно окрашивались в разные цвета. Возник вопрос, какое наименьшее количество красок необходимо для раскрашивания различных карт. Френсис Гутри предположил, хотя и не смог доказать, что четырех цветов будет достаточно. Эта проблема бурно обсуждалась в студенческих кругах, но позже была забыта.

«Проблема четырех красок» вызывала все больший интерес, но так и не была решена, даже выдающимися математиками. В 1890 году английским математиком Перси Хивудом было доказано, что для раскрашивания любой карты будет достаточно пяти красок. А только 1968 году смогли доказать, что для раскрашивания карты, на которой изображено меньше сорока стран, будет достаточно 4 цветов.

В 1976 году эта задача была решена при использовании компьютера двумя американскими математиками Кеннетом Аппелем и Вольфгантом Хакеном. Для ее решения все карты были поделены на 2000 типов. Для компьютера была создана программа, которая исследовала все типы с целью выяления таких карт, для раскрашивания которых будет недостаточно четырех красок. Только три типа карт компьютер исследовать не смог, поэтому математики изучали их самостоятельно. В результате было установлено, что для раскрашивания всех 2000 типов карт будет достаточно 4 красок. Им было объявлено о решении проблемы четырех красок. В этот день почтовое отделение при университете, в котором работали Аппель и Хакен на всех марках ставило штемпель со словами: «Четырех красок достаточно».

Можно представить задачу о четырех красках несколько иначе.

Для этого рассмотрим произвольную карту, представив ее виде графа: столицы государств являются вершинами графа, а ребра графа связывают те вершины (столицы), государства которых имеют общую границу. Для получения такого графа формулируется следующая задача - необходимо раскрасить граф с помощью четырех цветов так, чтобы вершины, имеющие общее ребро были раскрашены разными цветами.

Эйлеровы и Гамильтоновы графы

В 1859 году английским математиком Уильямом Гамильтоном была выпущена в продажу головоломка - деревянный додекаэдр (двенадцатигранник), двадцать вершин которого были обозначены гвоздиками. Каждая вершина имела название одного из крупнейших городов мира - Кантон, Дели, Брюссель, и т.д. Задача заключалась в нахождении замкнутого пути, который проходит по ребрам многогранника, побывав в каждой вершине только один раз. Для отмечания пути использовался шнур, который цепляли за гвоздики.

Гамильтоновым циклом называется граф, путь которого является простым циклом, который проходит через все вершины графа по одному разу.

На реке Прегель расположен город Калининград (бывший Кенигсберг). Река омывала два острова, которые между собой и с берегами были соединены мостами. Старых мостов сейчас уже нет. Память о них осталась только на карте города.

Однажды один житель города спросил у своего знакомого, можно ли пройти по всем мостам, побывать на каждом только один раз и вернуться к тому месту откуда началась прогулка. Эта задача заинтересовала многих горожан, но решить ее никто не смог. Этот вопрос вызвал заинтересованность ученных многих стран. Решение проблемы получил математик Леонард Эйлер. Кроме этого он сформулировал общий подход к решению таких задач. Для этого он превратил карту в граф. Вершинами этого графа стала суша, а ребрами - мосты, ее соединяющие.

При решении задачи про мосты Кенигсберга Эйлеру удалось сформулировать свойства графов.

    Начертить граф, начав движение с одной вершины и окончив в той же вершине одним росчерком (дважды не проводя по одной и той же линии и не отрывая карандаша от бумаги) возможно в том случае, если все вершины графа четные.

    Если есть граф с двумя нечетными вершинами, то его вершины тоже можно соединить одним росчерком. Для этого нужно начать с одной, а закончить на другой любой нечетной вершине.

    Если есть граф с числом нечетных вершин больше двух, то граф невозможно начертить одним росчерком.

Если применять эти свойства на задачу о мостах, то можно увидеть, что все вершины исследуемого графа нечетные, значит, этот граф нельзя соединить одним росчерком, т.е. невозможно пройти по всем мостам один раз и закончить путь в том месте, где он был начат.

Если граф имеет цикл (не обязательно простой), содержащий все рѐбра графа по одному разу, то такой цикл называется Эйлеровым циклом . Эйлерова цепь (путь, цикл, контур) — цепь (путь, цикл, контур), содержащая все рѐбра (дуги) графа по одному разу.

ГЛАВА II. ОПИСАНИЕ ИССЛЕДОВАНИЯ И ЕГО РЕЗУЛЬТАТЫ

2.1. Этапы проведения исследования

Для проверки гипотезы исследование включало три этапа (таблица 1):

Этапы исследования

Таблица 1.

Используемые методы

Теоретическое исследование проблемы

Изучить и проанализировать познавательную и научную литературу.

 самостоятельное размышление;

 изучение информационных источников;

 поиск необходимой литературы.

Практическое исследование проблемы

Рассмотреть и проанализировать области практического применения графов;

 наблюдение;

 анализ;

 сравнение;

 анкетирование.

3 этап. Практическое использование результатов

Обобщить изученную информацию;

 систематизация;

 отчет (устный, письменный, с демонстрацией материалов)

сентябрь 2017 г.

2.2. Области практического применения графов

Графы и информация

Теория информации широко использует свойства двоичных деревьев.

Например, если нужно закодировать некоторое число сообщений в виде определенных последовательностей нулей и единиц различной длины. Код считается наилучшим, для заданной вероятности кодовых слов, если средняя длина слов наименьшая в сравнении другими распределениями вероятности. Для решения такой задачи Хаффман предложил алгоритм, в котором, код представляется деревом-графом в рамках теории поиска. Для каждой вершины предлагается вопрос, ответом на который может быть либо, «да», либо «нет» - что соответствует двум ребрам, выходящим из вершины. Построение такого дерева завершается после установления того, что требовалось. Это может применяться в интервьюировании нескольких человек, когда заранее неизвестен ответ на предыдущий вопрос, план интервью представляется в виде двоичного дерева.

Графы и химия

Еще А. Кэли рассмотрел задачу о возможных структурах насыщенных (или предельных) углеводородов, молекулы которых задаются формулой:

CnH 2n+2

Все атомы углеводорода 4-хвалентны, все атомы водорода 1-валентны. Структурные формулы простейших углеводородов показаны на рисунке.

Каждую молекулу предельного углеводорода можно представить в виде дерева. При удалении всех атомов водорода, атомы углеводорода, которые остались, образуют дерево с вершинами, степень которых не выше четырех. Значит, количество возможных искомых структур (гомологов данного вещества) равняется числу деревьев, степени вершин которых, не больше 4. Это задача сводится к задаче о перечислении деревьев отдельного вида. Д. Пойа рассмотрел эту задачу и ее обобщения.

Графы и биология

Процесс размножения бактерий - это одна из разновидностей ветвящихся процессов, встречающихся в биологической теории. Пусть каждая бактерия по истечению определенного времени или погибает, или делится на две. Следовательно, для одной бактерии мы получим двоичное дерево размножения ее потомства. Вопрос задачи заключается в следующем, какое количество случаев содержит k потомков в n-м поколение одной бактерии? Данное соотношение в биологии носит название процесс Гальтона-Ватсона, которое обозначает необходимое количество нужных случаев.

Графы и физика

Сложная утомительная задача для любого радиолюбителя - создание печатных схем (пластина диэлектрика - изолирующего материала и вытравленные дорожки в виде металлических полосок). Пересечение дорожек происходит только в определенных точках (местах установления триодов, резисторов, диодов и пр.) по определенным правилам. В результате перед ученым стоит задача вычертить плоский граф, с вершинами в

Итак, все выше сказанное подтверждает практическую ценность графов.

Математика интернета

Интернет - всемирная система объединенных компьютерных сетей для хранения и передачи информации.

Сеть интернет можно представить в виде графа, где вершины графа - это интернет сайты, а ребра - это ссылки (гиперссылки), идущие с одних сайтов на другие.

Веб-граф (Интернет), имеющий миллиарды вершин и ребер, постоянно меняется - спонтанно добавляются и исчезают сайты, пропадают и добавляются ссылки. Однако, Интернет имеет математическую структуру, подчиняется теории графов и имеет несколько «устойчивых» свойств.

Веб-граф разрежен. Он содержит всего лишь в несколько раз больше ребер, чем вершин.

Несмотря на разреженность, интернет очень тесен. От одного сайта до другого по ссылкам, можно перейти за 5 - 6 кликов (знаменитая теория «шести рукопожатий»).

Как мы знаем, степень графа - это число ребер, которым принадлежит вершина. Степени вершин веб-графа распределены по определенному закону: доля сайтов (вершин) с большим количеством ссылок (ребер) мала, а сайтов с малым количеством ссылок - велика. Математически это можно записать так:

где - доля вершин определенной степени, - степень вершины, - постоянная, независящая от числа вершин веб-графа, т.е. не меняется в процессе добавления или удаления сайтов (вершин).

Этот степенной закон является универсальным для сложных сетей - от биологических до межбанковских.

Интернет как целое устойчив к случайным атакам на сайты.

Так как уничтожение и создание сайтов происходит независимо и с одинаковой вероятностью, то и веб-граф, с вероятность близкой к 1, сохраняет свою целостность и не разрушается.

Для изучения интернета необходимо строить модель случайного графа. Эта модель должна обладать свойствами реального интернета и не должна быть слишком сложной.

Эта задача пока полностью не решена! Решение этой задачи - построения качественной модели интернета - позволит разработать новые инструменты для улучшения поиска информации, выявления спама, распространения информации.

Построение биологических и экономических моделей началось значительно раньше, чем возникла задача построения математической модели интернета. Однако достижения в развитии и изучении интернета, позволили ответить на многие вопросы, касающиеся всех этих моделей.

Математика интернета востребована многими специалистами: биологами (предсказание роста популяций бактерий), финансистами (риски возникновения кризисов) и т.п. Изучение подобных систем - один из центральных разделов прикладной математики и информатики.

г. Мурманск с помощью графа.

Когда человек приезжает в новый для него город, как правило, первое желание - это посетить главные достопримечательности. Но при этом запас времени зачастую ограничен, а в случае деловой поездки, совсем мал. Следовательно, необходимо планировать знакомство с достопримечательностями заранее. И в построении маршрута отлично помогут графы!

В качестве примера рассмотрим типичный случай прибытия в Мурманск из аэропорта в первый раз. Планируется посетить следующие достопримечательности:

1. Морской православный храм Спас-на-водах;

2. Свято-Никольский собор;

3. Океанариум;

4. Памятник коту Семену;

5. Атомный ледокол Ленин;

6. Парк Огни Мурманска;

7. Парк Долина Уюта;

8. Кольский мост;

9. Музей истории Мурманского морского пароходства;

10. Площадь Пяти углов;

11. Морской торговый порт

Вначале расположим эти места на карте и получим наглядное представление о местоположении и расстоянии между достопримечательностями. Сеть дорог достаточно развита, и перемещение на автомобиле не будет затруднительным.

Достопримечательности на карте (слева) и полученный граф (справа) показаны на соответствующем рисунке ПРИЛОЖЕНИЯ №1. Таким образом, новоприбывший вначале проедет около Кольского моста(и, при желании может пересечь его туда - обратно); затем отдохнет в Парке Огни Мурманска и Долине Уюта и отправится дальше. В итоге оптимальный маршрут составит:

С помощью графа можно также визуализировать схему проведения соцопросов. Примеры представлены в ПРИЛОЖЕНИИ №2. В зависимости от данных ответов опрашиваемому задают разные вопросы. Например, если в социологическом опросе №1 опрашиваемый считает математику важнейшей из наук, у него спросят, уверенно ли он чувствует себя на уроках физики; если же он считает иначе, второй вопрос будет касаться востребованности гуманитарных наук. Вершинами такого графа являются вопросы, а ребрами - варианты ответов.

2.3. Применение теории графов при решении задач

Теория графов применяется при решении задач из многих предметных областей: математика, биология, информатика. Мы изучили принцип решения задач с помощью теории графов и составили собственные задачи по теме исследования.

Задача №1.

Пятеро одноклассников, на встрече выпускников, обменялись рукопожатиями. Сколько всего было сделано рукопожатий?

Решение: Обозначим одноклассников вершинами графа. Соединим каждую вершину линиями, с четырьмя другими вершинам. Получаем 10 линий, это и есть рукопожатиями.

Ответ: 10 рукопожатий (каждая линия означает одно рукопожатие).

Задача №2.

У моей бабушке в деревне, возле дома растут 8 деревьев: тополь, дуб, клен, яблоня, лиственница, береза, рябина и сосна. Рябина выше лиственницы, яблоня выше клена, дуб ниже березы, но выше сосны, сосна выше рябины, береза ниже тополя, а лиственница выше яблони. В какой последовательности расположатся деревья по высоте от самого высокого к самому низкому.

Решение:

Деревья - это вершины графа. Обозначим их первой буквой в кружочке. Проведем стрелки от низкого дерева к более высокому. Сказано, что рябина выше лиственницы, то стрелку ставим от лиственницы к рябине, берёза ниже тополя, то стрелку ставим от тополя к берёзе и т.п. Получаем граф, где видно, что самое низкое дерево - клен, потом яблоня, лиственница, рябина, сосна, дуб, береза и тополь.

Ответ: клен, яблоня, лиственница, рябина, сосна, дуб, береза и тополь.

Задача №3.

У Мамы есть 2 конверта: обычный и авиа, и 3 марки: квадратная, прямоугольная и треугольная. Сколькими способами Мама может выбрать конверт и марку, чтобы отправить письмо Папе?

Ответ: 6 способов

Задача №4.

Между населенными пунктами A, B, C, D, E построены дороги. Нужно определить длину кратчайшего пути между пунктами А и Е. Передвигаться можно только по дорогам, длина которых указана на рисунке.

Задача №5.

Тремя одноклассника - Максим, Кирилл и Вова решили заняться спортом и прошли отбор спортивные секции. Известно, что в баскетбольную секцию претендовал 1 мальчик, а в хоккей хотели играть трое. Максим пробовался только в 1 секцию, Кирилл отбирался во все три секции, а Вова в 2. Кого из мальчиков в какую спортивную секцию отобрали?

Решение: Для решения задачи применим графы

Баскетбол Максим

Футбол Кирилл

Хоккей Вова

Так как к баскетболу идет лишь одна стрелка, то Кирилла отобрали в сецию баскетбола . Тогда Кирилл не будет играть в хоккей , а значит, в хоккейную секцию отобрали Максима, который пробовался только в эту секцию, тогда Вова будет футболистом .

Задача №6.

Из-за болезни некоторых преподавателей, завучу школы, требуется составить фрагмент расписания занятий в школе хотя бы на один день, с учетом следующих обстоятельств:

1. Преподаватель ОБЖ согласен дать только последний урок;

2. Преподаватель географии может дать либо второй, либо третий урок;

3. Математик готов дать либо только первый, либо только второй урок;

4. Преподаватель физики может дать либо первый, либо второй, либо третий уроки, но только в одном классе.

Какое расписание может составить завуч школы, чтобы оно удовлетворяло всем преподавателей?

Решение: Эту задачу можно решить перебирая все возможные варианты, но проще, если начертить граф.

1. 1) физика 2. 1) математика 3. 1) математика

2) математика 2) физика 2) география

3) география 3) география 3) физика

4) ОБЖ 4) ОБЖ 4) ОБЖ

Заключение

В данной исследовательской работе была подробно изучена теория графов, доказана гипотеза, что изучение графов может помочь в решении логических задач, кроме того, рассмотрена теорию графов в разных областях науки и составлены свои 7 задач.

Использование графов при обучении обучающихся поиску решения задач позволяет совершенствовать графические умения учащихся и связывать рассуждения специальным языком конечного множества точек, некоторые из которых соединены линиями. Все это способствует проведению работы по обучению учащихся мышлению.

Эффективность учебной деятельности по развитию мышления во многом зависит от степени творческой активности учащихся при решении математических задач. Следовательно, необходимы математические задачи и упражнения, которые бы активизировали мыслительную деятельность школьников.

Применение задач и использованием элементов теории графов на факультативных занятиях в школе как раз и преследует цель активизации мыслительной деятельности учащихся. Мы считаем, что практический материал по нашему исследованию может быть полезен на факультативных занятиях по математике.

Таким образом, цель исследовательской работы достигнута, задачи решены. В перспективе мы планируем продолжить изучение теории графов и разработать свои маршруты, например, с помощью графа создать экскурсионный маршрут для школьного автобуса ЗАТО Александровск по музеям и памятным местам г. Мурманска.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

    Березина Л. Ю. «Графы и их применение» - М.: «Просвещение», 1979

    Гарднер М. «Математические досуги», М. «Мир», 1972

    Гарднер М. «Математические головоломки и развлечения», М. «Мир», 1971

    Горбачев А. «Сборник олимпиадных задач» - М. МЦНМО, 2005

    Зыков А. А. Основы теории графов. — М.: «Вузовская книга», 2004. — С. 664

    Касаткин В. Н. «Необычные задачи математики», Киев, «Радяньска школа», 1987

    Математическая составляющая / Редакторы-составители Н.Н. Андреев, С.П. Коновалов, Н.М. Панюшкин. - М.: Фонд «Математические этюды» 2015 г. - 151 с.

    Мельников О. И. «Занимательные задачи по теории графов», Мн. «ТетраСистемс»,2001

    Мельников О.И. Незнайка в стране графов: Пособие для учащихся. Изд. 3-е, стереотипное. М.: КомКнига, 2007. — 160 с.

    Олехник С. Н., Нестеренко Ю. В., Потапов М. К. «Старинные занимательные задачи», М. «Наука», 1988

    Оре О. «Графы и их применения», М. «Мир», 1965

    Харари Ф. Теория графов / Пер.с англ. и предисл. В. П. Козырева. Под ред. Г. П. Гаврилова. Изд. 2-е. - М.: Едиториал УРСС, 2003. - 296 с.

ПРИЛОЖЕНИЕ №1

Составление оптимального маршрута посещения главных достопримечательностей

г. Мурманск с помощью графа.

Оптимальный маршрут составит:

8. Кольский мост6. Парк Огни Мурманска7. Парк Долина Уюта2. Свято-Никольский собор10. Площадь Пяти углов5. Атомный ледокол Ленин9. Музей истории Мурманского морского пароходства11. Морской торговый порт1. Морской православный храм Спас-на-водах4. Памятник коту Семену3. Океанариум.

ПУТЕВОДИТЕЛЬ ПО ДОСТОПРИМЕЧАТЕЛЬНОСТЯМ МУРМАНСКА

ПРИЛОЖЕНИЕ №2

Социологические опросы № 1, 2

Виды графов могут определяться общими принципами их построения (таковы, например, двудольный граф и эйлеров граф), а могут зависеть от тех или иных свойств вершин или рёбер (например, ориентированный и неориентированный граф, обыкновенный граф).

Ориентированные и неориентированные графы

звеньями (порядок двух концов ребра графа не существенен), называются неориентированными .

Графы, в которых все рёбра являются дугами (порядок двух концов ребра графа существенен), называются ориентированными графами или орграфами .

Неориентированный граф может быть представлен в виде ориентированного графа , если каждое его звено заменить на две дуги, имеющие противоположные направления.

Графы с петлями, смешанные графы, пустые графы, мультиграфы, обыкновенные графы, полные графы

Если граф содержит петли , то это обстоятельство специально оговаривают, добавляя к основной харатеристике графа слова "с петлями", например, "орграф с петлями". Если граф не содержит петель, то добавляют слова "без петель".

Смешанным называют граф, в котором имеются рёбра хотя бы двух из упомянутых трёх разновидностей (звенья, дуги, петли).

Граф, состоящий только из голых вершин , называется пустым .

Мультиграфом называется граф, в котором пары вершин могут быть соединены более чем одним ребром, то есть содершащий кратные рёбра , но не содержащий петель.

Граф без дуг (то есть неориентированный), без петель и кратных рёбер называется обыкновенным . Обыкновенный граф изображён на рисунке ниже.

Граф заданного типа называют полным , если он содержит все возможные для этого типа рёбра (при неизменном множестве вершин). Так, в полном обыкновенном графе каждая пара различных вершин соединена ровно одним звеном (рисунок ниже).

Двудольный граф

Граф называется двудольным , если множество его вершин можно разбить на два подмножества так, чтобы никакое ребро не соединяло вершины одного и того же подмножества.

Пример 1. Построить полный двудольный граф.

Полный двудольный граф состоит из двух множеств вершин и из всевозможных звеньев, соединяющих вершины одного множества с вершинами другого множества (рисунок ниже).

Эйлеров граф

Мы уже касались задачи о кёнигсбергских мостах . Отрицательное решение Эйлером этой задачи привело к первой опубликованной работе по теории графов. Задачу об обходе мостов можно обобщить и получить следующую задачу теории графов: можно ли найти в данной графе цикл, содержащий все вершины и все рёбра? Граф, в котором это возможно, называется эйлеровым графом.

Итак, эйлеровым графом называется граф, в котором можно обойти все вершины и при этом пройти одно ребро только один раз. В нём каждая вершина должна иметь только чётное число рёбер.

Пример 2. Является ли полный граф с одинаковым числом n рёбер, которым инцидентна каждая вершина, эйлеровым графом? Объяснить ответ. Привести примеры.

Ответ. Если n - нечётное число, то каждая вершина инцидентна n -1 рёбрам. В таком случае данный граф является эйлеровым графом. Примеры таких графов на рисунке ниже.

Регулярный граф

Регулярным графом называется связный граф, все вершины которого имеют одинаковую степень k . Таким образом, на рисунке к примеру 2 изображены примеры регулярных графов, называемых по степени его вершин 4-регулярными и 2-регулярными графами или регулярными графами 4-й степени и 2-й степени.

Число вершин регулярного графа k -й степени не может быть меньше k +1. У регулярного графа нечётной степени может быть лишь чётное число вершин.

Пример 3. Построить регулярный граф, в котором самый короткий цикл имеет длину 4.

Решение. Рассуждаем так: для того, чтобы длина цикла удовлетворяла заданному условию, требуется, чтобы число вершин графа было кратно четырём. Если число вершин равно четырём, то получится граф, изображённый на рисунке ниже. Он является регулярным, но в нём самый короткий цикл имеет длину 3.

Увеличиваем число вершин до восьми (следующее число, кратное четырём). Соединяем вершины рёбрами так, чтобы степени вершин были равны трём. Получаем следующий граф, удовлетворяющий условиям задачи.

Гамильтонов граф

Гамильтоновым графом называется граф, содержащий гамильтонов цикл. Гамильтоновым циклом называется простой цикл, проходящий через все вершины рассматриваемого графа. Таким образом, говоря проще, гамильтонов граф - это такой граф, в котором можно обойти все вершины и каждая вершина при обходе повторяется лишь один раз. Пример гамильтонова графа - на рисунке ниже.

Пример 4. Задан двудольный граф, в котором n - число вершин из множества A , а m - число вершин из множества B . В каком случае граф будет эйлеровым графом, а в каком случае - гамильтоновым графом?

Похожие публикации